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Stem Cell Factor Functions as a Survival Factor for
Mature Leydig Cells and a Growth Factor for
Precursor Leydig Cells after Ethylene Dimethane
Sulfonate Treatment: Implication of a Role

of the Stem Cell Factor/c-Kit System

in Leydig Cell Development
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The significance of the interaction between Sertoli cell-produced stem cell factor (SCF) and its receptor, c-kit, on Leydig cells
(LCs) during LC development and differentiation is unknown. In the present study, we investigated the potential role of the
SCF/c-kit system in LC apoptosis and precursor LC proliferation after ethylene dimethane sulfonate (EDS) treatment in rats.
A function-blocking anti-c-kit antibody, ACK-2, was used to block SCF/c-kit interaction at four time points, corresponding
to the peak of LC apoptosis and three waves of proliferation of precursor LCs. Blockade of SCF/c-kit interaction by ACK-2
accelerated LC apoptosis and inhibited proliferation of precursor LCs during the first two waves of precursor LC proliferation
around days 3-4 and day 10, but not the third wave of precursor LC proliferation around day 20 after EDS treatment. The
data suggest that the soluble SCF might act as a survival factor for mature LCs and a growth factor for precursor LCs after
EDS-induced LC depletion. This is also supported by a close correlation between the oscillating levels of soluble SCF mRNA
and the profiles of LC apoptosis and regeneration. Since regeneration of the LC population after EDS treatment resembles
the development of adult-type LCs during prepubertal life, the present findings imply that soluble SCF might participate in
regulation of the formation of the LC population during testicular development. Our data also support a model in which
delicate and reciprocal regulation exists between soluble SCF production by Sertoli cells, testosterone production by LCs,
and pituitary gonadotropins. © 2000 Academic Press
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INTRODUCTION

In the rat testis, stem cell factor (SCF) is produced by
Sertoli cells and it interacts with its receptor, c-kit, on germ
cells and Leydig cells (LCs). This SCF/c-kit interaction
plays important roles in germ cell proliferation, differentia-
tion, and apoptosis during germ cell development (for
review see Loveland and Schlatt, 1997). However, the role
of SCF/c-kit interaction in LC development and differentia-
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tion is unknown despite the fact that LCs express c-kit.
Sertoli cells produce two forms of SCF, soluble SCF and
membrane-associated SCF (Rossi et al., 1991, 1994). Two
alternatively spliced SCF transcripts encode two cell-
associated SCF protein products, KL-1 and KL-2. The KL-2
protein lacks the major proteolytic cleavage site for the
generation of soluble SCF, thus representing a more stable
cell-associated form of SCF. Previously it was thought that
the soluble SCF arises from alternative splicing of exon 6
followed by protease cleavage (Flanagan et al., 1991; Galli et
al., 1994). However, this concept has been challenged by a
recent study showing that ablation of exon 6 using a
homologous recombination technique did not abolish the
production of soluble SCF, indicating that soluble SCF can

169



170

be produced from KL-2 by proteolytic cleavage at sites other
than that encoded by exon 6 in vivo (Tajima et al., 1998).
Both forms can interact with the SCF receptor, c-Kit,
present on spermatogonia, spermatocytes, and spermatids
(Anderson et al., 1990; Langley et al., 1992). It has been
shown that the membrane-associated form of SCF is more
important than the soluble form as regards germ cell
proliferation and survival (Tajima et al., 1991). However,
the role of the soluble form is largely unknown. The ratio of
these two forms of SCF appears to be tissue-specific (Huang
et al., 1992). It has been noticed that the ratio changes
during testicular injury (Allard et al., 1996; Blanchard et al.,
1998). The soluble SCF is also thought to be necessary for
distant target cells, such as LCs (Loveland and Schlatt,
1997). Blocking SCF function by means of an anti-c-kit
monoclonal antibody, ACK-2, results in depletion of prolif-
erating type A spermatogonia in vivo (Yoshinaga et al.,
1991), delay of spermatid maturation (Vincent et al., 1998),
and enhanced apoptosis of all types of germ cells in vitro
(Yan et al., 2000), but no significant effect on LC function,
even though transient elevation of testosterone levels has
been observed (Yoshinaga et al., 1991).

Ethylene dimethane sulfonate (EDS) selectively induces
apoptosis of mature LCs in the rat (Morris et al., 1986).
After EDS administration, mesenchymal-like precursor
Leydig cells start to proliferate and further differentiate into
mature LCs (Teerds et al., 1988). Several studies have
shown that the regeneration of LCs can take place in the
absence of LH and other pituitary hormones (for review see
Teerds, 1996). It is strongly suggested that locally produced
growth factors may be involved in the regulation of LC
repopulation. However, the nature of these factors still
remains unknown. The proliferation and differentiation of
precursor LCs into mature LCs after EDS administration
can be used as a model for investigating regulation of the
development of adult-type LCs before puberty, due to the
many similarities between these two processes (for review
see Teerds, 1996).

In the present study, we employed EDS-treated rats and a
function-blocking anti-c-kit antibody, ACK-2, to study the
potential role of the SCF/c-kit system in LC development
and differentiation. By monitoring LC apoptosis and precur-
sor LC proliferation at various time points after EDS ad-
ministration using TUNEL staining and immunohisto-
chemical detection of in vivo-incorporated BrdU,
respectively, we obtained a detailed time course of mature
LC apoptosis and precursor LC proliferation. By means of
Northern hybridization and quantitative RT-PCR, an inter-
esting correlation between the changes in soluble SCF
MRNA levels and LC apoptosis and proliferative activity of
precursor LCs was observed, which strongly implicated the
involvement of this factor in LC apoptosis and precursor LC
proliferation. We then administered ACK-2 antibody at the
time points corresponding to the peak of LC apoptosis and
three waves of precursor LC proliferation, to see how
blockade of SCF/c-kit interaction affects these processes.
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MATERIALS AND METHODS

Animals and Treatments

Adult male rats of the Sprague-Dawley strain, ages 60-70 days,
were used. The rats were housed under controlled conditions of
light (14 h light, 10 h of darkness) and temperature (21-22°C), with
free access to water and food.

All animal experiments were approved by the Turku University
Committee on Ethics of Animal Experimentation.

The animals were injected ip with a single dose of EDS (75 mg/kg
BW). EDS was synthesized as previously described (Jackson and
Jackson, 1984) and dissolved in dimethyl sulfoxide:water (1:3,
vol/vol). Control animals received injection of vehicle. Rats (three
per group) were Killed by cervical dislocation under CO, anesthesia
ondays1,2,3,4,7,10, 15, 20, 30, and 40 after EDS administration.
One hour before sacrifice, the rats received a single ip injection of
BrdU (50 mg/kg BW) dissolved in physiological saline. Blood was
collected for hormone measurements. One testis was fixed in
freshly prepared 4% paraformaldehyde at 4°C overnight and em-
bedded in paraffin for TUNEL staining and immunohistochemical
detection of incorporated BrdU. Half of the other testis was snap
frozen in liquid N, and then stored at —70°C for isolation of RNA,
and the other half was used for LC isolation.

A separate experiment was conducted to study the effect of
blockade of SCF/c-kit interaction on LC apoptosis and regeneration
by using a function-blocking anti-c-kit antibody, ACK-2, which
was generously provided by Dr. T. Kunisada (Department of
Immunology, Faculty of Medicine, Tottori University, Japan). To
determine the optimal dose at which the interaction of SCF/c-kit
can be effectively blocked, a dose-response experiment was per-
formed by injecting ACK-2 antibody iv at 0.5-5.0 mg/kg BW in
physiological saline, and induction of spermatogonial apoptosis
was monitored by in situ 3’-end labeling (TUNEL) staining. A dose
of 3.5 mg/kg BW was chosen for the following experiments since a
maximal number of TUNEL-positive spermatogonia was observed
at a dose between 3.0 and 5.0 mg/kg B.W. (data not shown). The
time schedules for administering ACK-2 antibody are shown in Fig.
1. Rats were divided into three groups according to the schedules
with 12 rats in each: 3 treated with EDS + ACK-2, 3 treated with
EDS only, and 6 controls including 3 treated with EDS + a
monoclonal anti-B-actin antibody (ICN Biomedicals, Inc., Aurora,
OH) and 3 treated with vehicle. In schedule 1, the EDS + ACK-2
group received an ACK-2 injection every 2 days during days 0-4
after EDS administration (Fig. 1, schedule 1). In schedules 2 and 3,
the EDS + ACK-2 group received an ACK-2 injection every 2 days
during days 7-11 and 20-24, respectively, after EDS treatment (Fig.
1, schedules 2 and 3). BrdU injection and tissue collection were
performed as described above.

Hormone Measurements

Serum testosterone (T) concentrations were measured from
diethyl ether extracts by RIA, as described previously (Huhtaniemi
etal., 1985). Serum LH levels were measured using a supersensitive
immunofluorometric assay, based on the Delfia principle (Wallac
Oy, Turku, Finland), as described previously (Haavisto et al., 1993).
The sensitivity of the assay was 0.75 pg/tube, the intraassay
coefficient of variation (CV) was 7%, and the interassay CV 10%.
The results were expressed in terms of the NIDDK (Bethesda, MD)
reference preparation LH-RP-2. Serum FSH levels were determined
by a double-antibody RIA method (Kolho et al., 1988), using kits
supplied by NIDDK. The sensitivity of the assay was 0.15 ng/tube,
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FIG. 1. Schematic presentation of the experimental design. A
single dose of EDS (75 mg/kg BW) was injected ip on day O and
ACK-2 antibody (3.5 mg/kg BW) was injected iv every 48 h during
days 0-4, 7-11, and 20-24 after EDS treatment. Vehicles and an
unrelated antibody, a monoclonal anti-B-actin antibody (BaAb),
were injected at 3.5 mg/kg BW in the control groups.

the intraassay CV was <8%, and the interassay CV was <15%. The
results were expressed in terms of reference preparation FSH-RP-2.

TUNEL Staining of Apoptotic LCs

Two consecutive sections (5 um thick) were cut from each
paraffin block, one for TUNEL staining and the other for periodic
acid-Schiff (PAS)-hematoxylin staining. After rehydration, the
sections were incubated in 2X SSC at 80°C for 20 min followed by
two washes with water and one with proteinase K buffer (20 mM
Tris-HCI, pH 7.4, 2 mM CaCl,) for 5 min each. The slides were
then treated with proteinase K (10 pg/ml; Boehringer Mannheim
GmbH, Mannheim, Germany) in proteinase K buffer at 37°C for 30
min. An aliquot of 20 ul of 3’-end labeling reaction mixture
containing 4 ul 5X TdT buffer (Promega), 0.1 pl Dig-11-ddUTP (10
nmol/ul; Boehringer Mannheim), 0.2 pl dd-ATP (5 mM; Promega),
1 wl terminal deoxynucleotidyl transferase (Boehringer Mann-
heim), and 14.7 ul nuclease-free water (Promega) was applied to one
cross section. The slides were kept in a humidified box and
incubated at 37°C for 1 h followed by three washes with TBST
buffer (10 mM Tris—-HCI, pH 8.0, 100 mM NacCl, and 0.1% Tween
20) for 10 min each. A anti-Dig-HRP monoclonal antibody (DAKO
Corp., Glostrup, Denmark; 1:200 dilution in TBST containing 1%
BSA) was applied and the slides were incubated in a humidified box
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at room temperature for 1 h followed by three washes with TBST
for 5 min each. Finally, the labeled cells were visualized by use of
3,3'-diaminobenzidine tetrahydrochloride (Sigma, St. Louis, MO)
for 0.5-2 min.

Immunohistochemical Detection of Incorporated
BrdU in Proliferating Interstitial Cells

Two 5-um-thick consecutive sections were cut from each
sample and mounted on poly-lysine-coated slides. One section was
used for immunohistochemical staining of BrdU and the other for
PAS-hematoxylin staining.

After dewaxing and rehydration, using xylene and a series of
ethanol dilutions, the slides were washed twice in TBS buffer (10
mM Tris—-HCI, pH 8.0, 100 mM NacCl) for 5 min each followed by
microwave antigen retrieval at 700 W for 15 min in 10 mM sodium
citrate solution, pH 6.0. After two washes with TBS, an aliquot of
50 wl of blocking solution (TBS containing 1% BSA, 3% fetal calf
serum, and 3% normal horse serum) was applied and the sections
were incubated for 1 h at room temperature. After blocking, an
aliquot of 50 ul mouse monoclonal anti-BrdU antibody (1:200
diluted in TBS containing 1% BSA) was applied and the sections
were incubated at 4°C overnight. Incubation with secondary anti-
body and visualization of BrdU-positive cells were carried out by
using a Vectastain Elite kit (Vector Laboratories, Burlingame, CA)
according to the manufacturer’s instructions. Antibody neutralized
with a 100-fold excess of BrdU was used in control sections for
monitoring the specificity of the immunostaining.

Isolation of Precursor LCs

The procedure used to isolate the LCs and precursor LCs was
carried out essentially as described previously (Abney and Zhai,
1998). Briefly, dispersed interstitial cells were separated from the
tubular compartment by filtration through surgical gauze and
washed twice in DMEM/F12 by centrifugation at 800g to precipi-
tate the cells and remove collagenase. The cells were suspended in
55% Percoll and centrifuged at 20,000g for 60 min at 4°C in a
Beckman JA-20 fixed angle rotor. A gradient was thereby generated
in which cells banded in the region of their isodensity. A gradient
containing density marker beads was centrifuged simultaneously
to provide a guide for fractionation. A gradient fraction containing
precursor LCs was removed from the Percoll gradient between
densities of 1.064 and 1.070 g/ml, and a gradient fraction enriched
in mature LCs was collected from a density region heavier than
1.070 g/ml. Each fraction was diluted with DMEM/F12 and centri-
fuged at 800g to remove the Percoll while pelleting the cells. The
purity of the precursor LCs and mature LCs isolated by this
procedure has been reported previously to be 90 and 93%, respec-
tively, based on 3p-hydroxysteroid dehydrogenase histochemical
staining (Shan and Hardy, 1992).

Cell Proliferation ELISA

Precursor and mature LCs isolated from rats at days 3, 10, and 20
after EDS treatment were cultured in Hepes-buffered Waymouth’s
medium supplemented with 9% heat-inactivated horse serum (Life
Technologies, Inc., Paisley, Scotland, UK) and 4.5% fetal calf serum
(Biochler, Wilts, UK) containing penicillin (10,000 units/L) and
streptomycin (50 mg/L), at a density of 10* cells/well/100 ul in
96-well plates for 24 h at 37°C in an atmosphere of 5% CO, in air.
The medium was then changed and the cells were incubated in
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fresh medium containing vehicle (control), recombinant mouse
SCF (100 ng/ml; Genzyme Transgenics Corp., Cambridge, MA),
ACK-2 (5 pg/ml) + SCF, or mouse IgG (5 ng/ml; Zymed Laborato-
ries, Inc., San Francisco, CA) + SCF for 12 h and then an aliquot of
10 wl of BrdU solution (100 uM) was added to each well and
incubation was continued for another 12 h. Colorimetric ELISA
was then performed to detect BrdU incorporation according to the
instructions of the kit manufacturer (Boehringer Mannheim). For
each time point, cells from three treated and three untreated
animals were analyzed in triplicate. The absorbance of the samples
was measured in an ELISA reader (Wallac Oy) at 370 nm. A
wavelength of 495 nm was used for reference.

Quantitative Analysis of BrdU Contents in DNA
from Isolated LCs

DNA was extracted from precursor and mature LCs isolated
from rats at days 3, 10, and 20 after EDS treatment by using a
conventional phenol/chloroform method. After denaturation, 100
ng of DNA was blotted onto a nylon membrane (Hybond-N;
Amersham, Aylesbury, UK) using a vacuum slot-blot apparatus
(Schleicher & Schuell, Dassel, Germany). After UV cross-linking,
the membranes were subjected to chemiluminescent immunode-
tection of BrdU using the same monoclonal anti-BrdU antibody as
was used in BrdU immunohistochemistry and an ECL system
(Amersham, Buckinghamshire, UK) according to the supplier’s
instructions. To normalize loading differences, the membrane was
then hybridized with a rat p-globin cDNA probe, which was
generated by PCR using a primer pair (5'-CCA ATC TGC TCA
CAC AGG ATA GAG AGG GCA GG-3';5'-CCT TGA GGC TGT
CCA AGT GAT TCA GGC CAT CG-3') and labeled with
[**P]dCTP by the random priming method.

Quantitative Analysis of BrdU
Immunohistochemical Staining
of Precursor Leydig Cells

The number of BrdU-positive cells in the interstitium (except
occasionally positive myoid cells) in one cross section was counted
under a microscope. The slides were then scanned by using a
UMAX scanner (UMAX, Inc., Fremont, CA) and a Binuscan Pho-
toperfect software package (Binuscan, Inc., New York, NY) and the
images of the sections were subjected to a quantitative image
analysis program, Tina (version 2.04; Raytest Isotopenmel gerate
GmbH, Straubenhardt, Germany), to calculate the area of the cross
sections according to the manufacturer’s instructions. Proliferative
activity was represented by the number of BrdU-positive precursor
LCs per square millimeter of cross section.

Northern Blot Analysis

Total RNA extraction and Northern blot hybridization of SCF
mMRNA were performed as described earlier (Hakovirta et al., 1999).

Quantitative RT-PCR for SCF

First-strand complementary DNA was synthesized using 1 ug
total RNA in the presence of 12.5 U of avian myeloblastosis
virus-reverse transcriptase (Promega, Madison, WI) and 100 pmol of
random primer (Promega). After reverse transcription (RT) reac-
tion, 2 ul of the incubation mixture was used for the subsequent
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PCR. SCF-specific primers were designed to encompass exon 6 so
that the two forms of SCF could be distinguished. The sense
primer, 5-ACTTGGATTCTCACTTGCATTTATC-3', and the an-
tisense primer, 5’-CTTCCAGTATAAGGCTCCAAAAGC-3’, cor-
respond to nt 199-223 and nt 874-897, respectively, of the rat SCF
cDNA sequence (Martin et al., 1990). The expected sizes of the
PCR products were 699 bp for the soluble SCF and 613 bp for the
membrane SCF.

To monitor equal PCR amplification efficiency, an internal
control, a 395-bp fragment of the L19 ribosomal protein gene (Chan
et al., 1987), was coamplified with SCF, using a sense primer,
5'-GAAATCGCCAATGCCAACTC-3’, and an antisense primer,
5'-TCTTAGACCTGCGAGCCTCA-3'. The PCR volume was 50
wl containing 50 pmol of each primer, dNTP mixture (250 umol/L)
containing 50 umol of digoxigenin—-dUTP/L (Boehringer Mann-
heim), and 5 U of Dynazyme-DNA polymerase in 1X PCR buffer
(10 mM Tris-HCI, 50 mM KCI, 1.5 mM MgCl,, and 0.1% Triton
X-100, pH 8.8) (Finnzymes, Espoo, Finland). The PCR was per-
formed under the following conditions: 94°C for 1 min (4 min for
the first cycle), 53°C for 1 min, 72°C for 1 min (10 min for the last
cycle). Ten to 40 cycles of PCR were tested to find the exponential
phase for both SCF and L19. Twenty cycles were chosen for further
analysis because at this time both SCF and L19 were in the
exponential phase (data not shown). After 20 cycles of PCR, the
reaction mixture was loaded onto a 1.6% agarose gel and separated
at 100 V for 30 min followed by blotting onto a nylon membrane
(Hybond-N; Amersham) with 10X SSC. The membrane was incu-
bated in 1X blocking solution (Boehringer Mannheim) containing
anti-Dig"-AP antibody (1:10,000 dilution) for 30 min and then
chemiluminescent detection by CSPD (Boehringer Mannheim) was
performed according to the manufacturer’s instructions. Finally,
the PCR products were exposed to X-ray film for further quantita-
tive analysis.

Quantitative Analysis of RT-PCR and Northern
Hybridization

The X-ray films of the RT-PCR and Northern blotting results
were first scanned by using a UMAX scanner (UMAX Inc.) and a
Binuscan Photoperfect software package (Binuscan, Inc.). The im-
ages were saved as TIFF-type files (*.tif; Microsoft Co. and Aldus
Co., New York, NY) and then quantified by using a Tina 2.0
densitometric analytical system (Raytest Isotopenmeld gerate
GmbH) according to the manufacturer’s instructions. For RT-PCR
results, the densitometric values were first normalized to L19
values, the highest one was designated 100%, and the others were
expressed as percentages of this. For Northern blotting results,
similarly, after normalization to the densitometric values of 28S
rRNA, the highest densitometric value was designated 100%, and
the other values were expressed as percentages of this.

Immunohistochemical Detection of Kit Receptor
Protein on Precursor LCs

Immunohistochemical detection of Kit protein was performed as
described for detection of BrdU except for the primary antibody
used, which was rabbit anti-Kit polyclonal antibody M-14 (Santa
Cruz, Santa Cruz, CA).
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Statistical Analysis

Values from three to four samples receiving the same treatment
were pooled for calculation of their means and standard errors
(SEMs) and for one-way analysis of variance and Duncan’s new
multiple range test, to determine significant differences between
different experimental groups by using StatView 4.51 statistic
program (Abacus Concepts, Inc., Berkeley, CA). Probability values
less than 0.05 were considered statistically significant.

RESULTS

Hormone Profiles after EDS Treatment

In the present study, more time points after EDS treat-
ment have been analyzed compared with previous studies
(Henriksen et al., 1995; Tena-Sempere et al., 1997). De-
tailed hormone profiles (testosterone, LH, and FSH) after
EDS treatment are shown in Fig. 2. Serum LH levels
increased significantly within 48 h compared with controls
and peaked on days 10-20. Thereafter, LH levels declined
and they returned to control levels on day 40 after EDS
treatment (Fig. 2, upper graph). Serum T levels decreased to
undetectable within 48 h and remained as such until day 10
after EDS treatment. Serum T levels started to increase
from day 20 onward and nearly reached control levels on
day 40 (Fig. 2, middle). Serum FSH levels were significantly
elevated during days 2-20 and they decreased afterward to
control levels by day 40 after EDS treatment (Fig. 2, bot-
tom).

Time Course of LC Apoptosis after EDS
Administration

As shown in Fig. 3, apoptotic LCs induced by EDS on days
1-4 were visualized by TUNEL staining. Most LCs started
to be TUNEL-positive within 24 h and the number of
TUNEL-positive LCs peaked at around 48 h after EDS
treatment. On days 3 and 4, only a few late-stage apoptotic
LCs and apoptotic blasts absorbed into the capillaries were
present in the interstitium. No TUNEL-positive interstitial
cells were seen on day 7 after EDS treatment (data not
shown).

Blockade of SCF/c-Kit Interaction by ACK-2
Accelerates LC Apoptosis Induced by EDS

Depletion of mature LCs took place within 4 days and LC
apoptosis peaked at day 2 after EDS treatment. Therefore,
we applied ACK-2 during the first 4 days after EDS treat-
ment to see if this would affect LC apoptosis. As shown in
Fig. 3, LC apoptosis was much more severe in the group
receiving EDS and ACK-2 simultaneously (EDS + ACK-2)
than in the EDS-only groups on day 1. Upon day 2, the
interstitium of the testis was similar to that of the EDS-
only group on day 4. Only apoptotic blasts inside the
capillaries, rather than dispersed apoptotic LCs in situ, were
observed in the interstitium. Thus, the testicular intersti-
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FIG. 2. Hormonal profiles of EDS-treated rats. Values of the
controls (Co) at all time points (days 1-40) were pooled. LH levels
after EDS treatment are shown in the upper graph. Serum testos-
terone and FSH levels are indicated in the middle and lower graph,
respectively. Data are represented as means * SEM of three
independent experiments. *P < 0.05, **P < 0.01, compared with
controls.

tium appeared to be emptier in the EDS + ACK-2 group
than in the EDS-only group on day 2, indicating faster
depletion of LCs after EDS treatment in the presence of
ACK-2.

Time Course of Precursor LC Proliferation

Immunodetection of incorporated BrdU in proliferating
cells enabled us to monitor precursor LC proliferation after
depletion of mature LCs by means of EDS (Fig. 4A). Quan-
titative analysis of BrdU-positive new LCs revealed three
peaks of BrdU incorporation after EDS treatment (Fig. 4B).
The first peak appeared on days 3 and 4, when mature LCs
were almost completely depleted. The second peak was
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FIG. 3. TUNEL staining results showing LC apoptosis in the first
4 days after EDS treatment (A) and the effect of ACK-2 injection
during the first 2 days on LC apoptosis (B). Arrows point to
TUNEL-positive LCs or apoptotic blasts. Bar, 100 um and all
images are of the same magnification.

observed around day 10, when serum T concentrations had
declined to undetectable levels (Fig. 2) and germ cells were
extensively undergoing apoptosis (data not shown). The
third peak was around day 20, when testosterone levels had
increased significantly in comparison to those on days 2-10
(Fig. 2). Morphological quantification of the proliferative
activity of precursor LCs was further validated by DNA
BrdU content assay, which detected the amount of BrdU
incorporated into DNA during proliferation of precursor
LCs. Three peaks of BrdU incorporation were observed at
similar time points (Figs. 4C and 4D).
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Blockade of SCF/c-Kit Interaction by ACK-2
Inhibits the First Two Waves but Not the Third
Wave of Proliferation of Precursor LCs

ACK-2 was generated by immunizing rats with murine
mast cells, and it can antagonize murine c-kit (Yoshinaga et
al., 1991). It has been shown that ACK-2 can also act as an
antagonist of rat c-kit (Yan et al., 2000). In the present
study, ACK-2 antibody was administered iv on days 1-4,
7-11, and 21-24 after EDS treatment, the time points
corresponding to the three peaks of precursor LC prolifera-
tion. Effectiveness was monitored by observing signifi-
cantly reduced numbers of proliferating spermatogonia
(BrdU immunohistochemical staining) and increased num-
bers of apoptotic spermatogonia (TUNEL staining) in the
seminiferous epithelium (data not shown). To exclude pos-
sible artifact caused by the mouse monoclonal antibody
used, we employed a similar type of mouse monoclonal
anti-B-actin antibody as a control. No effect on the prolif-
eration of precursor LCs in the EDS-treated rats was ob-
served when this irrelevant antibody was injected at a
similar dose at all the three time points (Fig. 5). A severe
reduction in the number of BrdU-positive precursor LCs in
the EDS + ACK2 group was revealed, compared with the
EDS-only group at days 1-4 and 7-11 (Fig. 5, P < 0.05, n =
3). During the first two waves of precursor LC proliferation
(days 1-4 and 7-11), the number of BrdU-positive LCs in the
EDS + ACK-2 group was only half of that in the EDS-only
group. Surprisingly, no significant difference in the prolif-
erative activity of precursor LCs was observed between
these two groups during the third wave of precursor LC
proliferation (Fig. 5, days 20-24).

SCF Stimulates Proliferation of Precursor LCs and
Mature LCs Inhibit This Stimulatory Effect

Primary cell culture and colorimetric cell proliferation
ELISA were employed to analyze the effect of recombinant
SCF on the proliferation of precursor LCs and mature LCs
isolated from the EDS-treated rats on days 3, 10, and 20. After
24 h culture, the isolated cells were attached and BrdU was
incorporated into the proliferating cells during the last 12 h of
the following 24 h culture in the presence of SCF, ACK-2 +
SCF, mouse IgG + SCF, or corresponding vehicle controls.
Interestingly, a three- to fourfold increase of BrdU incorpora-
tion was observed in the presence of SCF at each time point in
the enriched precursor LCs, while no effect was found in
mature LCs under the same culture conditions (Fig. 6). ACK-2
or mouse IgG alone did not show significant effect on precur-
sor LC proliferation (data not shown). When the cells were
preincubated with ACK-2 (5 ug/ml) for 4 h followed by SCF
(100 ng/ml) stimulation for 24 h, no significant effect on the
proliferative activity of precursor LCs was found comparing to
the precursor LC-only group. However, when cells were pre-
treated with mouse IgG followed by SCF stimulation, the
stimulatory effect of SCF was maintained at all three time
points. Surprisingly, the stimulatory effect of SCF was almost
totally abolished when precursor LCs were cocultured with
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FIG. 4. Visualization of proliferating precursor LCs by immunohistochemical detection of incorporated BrdU and quantification of
proliferative activity of precursor LCs during LC regeneration after depletion by means of EDS. (A) Photomicrographs of immunohisto-
chemical detection of BrdU incorporated into proliferating precursor LCs and germ cells. Arrows point to BrdU-positive precursor LCs. Bar,
100 wm and all images are of the same magnification. (B) Quantitative analysis of proliferative activity of precursor LCs during the whole
regeneration process. Proliferative activity is represented by the number of BrdU-positive precursor LCs per square millimeter cross section.
Data are represented as means = SEM (n = 15). *P < 0.05, **P < 0.01, compared with the controls. (C) A representative result of DNA
BrdU content assay. DNA was isolated from purified LCs and an aliquot of 100 ng of DNA was blotted onto a nylon membrane and
subjected to immunodetection using an anti-BrdU antibody and an ECL system. The evenness of blotting was monitored by hybridization
with a PCR-generated g-globin cDNA probe labeled with [*P]JdCTP. (D) Quantitative analysis of DNA BrdU content assay. Data are
representative of three independent experiments. ADU, arbitrary densitometric unit.

mature LCs at a ratio of 1:1 (Fig. 6). Interestingly, no signifi-
cant effect on precursor LC proliferation was observed when
the ratio of precursor LCs/mature LCs was higher than 1:1
(data not shown).

Blockade of SCF/c-Kit Interaction Affects
Testosterone Production by Regenerated LCs

Administration of ACK-2 for 4 days to normal adult rats did
not cause significant changes in testosterone levels even
though massive spermatogonial apoptosis was induced. The
observation is consistent with that of a previous report (Yo-
shinaga et al., 1991). Regenerated LCs started to produce
testosterone around day 20 after EDS treatment. Hormone
levels in the EDS + ACK-2 group and the EDS-only group

were measured to see if ACK-2 administration affects T
production by newly formed LCs. As shown in Fig. 7, serum T
levels in the EDS + ACK-2 group were significantly higher
than those in the EDS-only group (Fig. 7, bottom; P <0.01,n =
3). Consistently, LH levels in the EDS + ACK-2 group were
significantly lower that those in the EDS-only group (Fig. 7,
top; P < 0.05, n = 3). No significant difference was observed in
FSH levels between these two groups during the three periods
of ACK-2 treatment and FSH levels in both groups were all
higher than those in the control groups (data not shown).

Precursor LCs Express Kit

It has long been known that mature LCs express c-Kit
protein. To see if precursor LCs are also c-kit-positive,
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immunohistochemical staining using a rabbit anti-c-kit
polyclonal antibody, M-14, was carried out using testis
sections from rats at days 4, 7, and 20 after EDS treatment
(Figs. 8A-8C). Kit protein was exclusively localized to the
cytoplasmic membrane of spermatogonia, precursor LCs,

-
L

Absorbance (A370nm-A492nm)
o e
o k)

Yan et al.

and regenerated (differentiated) LCs. Preabsorbed antibody
was used as a control and no specific staining was observed
(Fig. 8D)

Down-regulated SCF mRNA Levels Correlate with
LC Apoptosis after EDS Treatment

To see how SCF levels are regulated during LC depletion
and regeneration after EDS treatment, both Northern blot-
ting and semiquantitative RT-PCR were performed. An
oscillating pattern of SCF mRNA levels during these pro-
cesses was observed (Fig. 9). After EDS administration
Northern hybridization showed a significant reduction in
SCF mRNA levels within 48 h in comparison with the
controls (Figs. 9A and 9B). Since Northern blotting cannot
distinguish the two forms of SCF mMRNAs (named KL1 and
KL2), a semiquantitative RT-PCR system was set up to
monitor their changes. RT-PCR analysis revealed that it
was KL1, not KL2, that was significantly down-regulated on
days 1-2 after EDS treatment (Figs. 9C and 9D).

Up-regulated KL1 mRNA Levels Correlate with
the Proliferative Activity of Precursor LCs

A fivefold increase in SCF mRNA levels on days 3 and 4
and two- to threefold increases on days 10 and 20 after EDS
treatment were observed in Northern hybridization analy-
sis in comparison with controls (Figs. 9A and 9B). The
results were further confirmed by quantitative RT-PCR
analysis (Figs. 9C and 9D). On days 3 and 4, KL1 mRNA
levels were three- to fourfold higher than in the controls.
On days 10 and 20, a threefold increase in KL1 mRNA

BMLC

OMLC+SCF

WPLC

OPLC+SCF

B PLC+ACK-2+SCF
OPLC+Mouse

1gG+SCF
PLC+MLGC+SCF

o

Day after EDS treatment

FIG. 6. Effect of SCF on the proliferation of precursor LCs in vitro. Precursor (PLC) and mature (MLC) LCs isolated from rats at days 3,
10, and 20 after EDS treatment were cultured at a density of 10* cells/well/100 wl medium in 96-well plates for 24 h at 37°C. The medium
was then changed and the cells were incubated for 12 h in fresh medium containing vehicle (control), recombinant mouse SCF (100 ng/ml),
ACK-2 (5 pg/ml) + SCF, or mouse 1gG (5 ng/ml) + SCF. An aliquot of 10 ul of BrdU solution (100 M) was then added to each well and
incubation was continued for another 12 h. Colorimetric ELISA was then performed according to the instructions of the supplier. *P < 0.01

(n = 9) compared with PLC groups.
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levels was detected. No significant variations in KL-2
MRNA levels were detected 3-40 days after EDS treatment.

DISCUSSION

The membrane-associated form of SCF appears to be
more important for primordial germ cell migration, adhe-
sion, survival, and proliferation, since some types of Sl
mutant mice produce soluble SCF, but still display im-
paired germ cell development and spermatogenesis (for
review see Loveland and Schlatt, 1997). However, the
physiological role of soluble SCF during testicular develop-
ment and spermatogenesis is largely unknown although
both soluble and membrane SCF are highly expressed
within the testis and both can interact with c-kit (Anderson
et al., 1990; Langley et al.,, 1992; Allard et al., 1996;
Blanchard et al., 1998). Given that c-kit is located on LCs in
addition to spermatogonia and spermatocytes and soluble
SCF could be secreted and reach the interstitium, it is
plausible to assume that soluble SCF might be involved in
LC development and/or differentiation. In the present
study, revealing the time points corresponding to the peak
of mature LC apoptosis and three waves of precursor LC
proliferation after EDS treatment using TUNEL staining
and immunohistochemical detection of incorporated BrdU
enabled us to block SCF/c-kit interaction with ACK-2
antibody during these specific periods and to see the effects.

Several groups of investigators have verified that EDS
depletes LCs through apoptosis (Tapanainen et al., 1993;

Immunohistochemical detection of c-kit on precursor Leydig cells. Cross sections of rat testis on days 4 (A), 7 (B), and 20 (C) after

EDS treatment were stained by using M-14 (1:200 dilution). Specific staining appears to be on the cytoplasmic membrane of precursor or
mature Leydig cells (LC) and spermatogonia (Sg). Sections stained with preabsorbed antibody were used as control (D). Bar, 50 um.
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hybridization result. Ten micrograms of total RNA was loaded in each lane and hybridized with an SCF-specific riboprobe labeled with
[**P]JUTP. The evenness of loading was monitored by rehybridization with a 28S cDNA probe. (B) Quantitative analysis of Northern blotting
results. Data are representative of three independent experiments. ADU, arbitrary densitometric unit. (C) A representative quantitative
RT-PCR result showing changes in the levels of the two forms of SCF mMRNAs (KL-1 and KL-2) after EDS treatment. One microgram of total
RNA was reverse-transcribed followed by PCR amplification using a pair of primers encompassing exon 6. The sizes of KL1 and KL2
appeared to be 699 and 613 bp, respectively. (D) Quantitative analysis of RT-PCR results. Data are representative of three independent

experiments. ADU, arbitrary densitometric unit.

Henriksen et al., 1995; Taylor et al., 1998). However, the
mechanism by which EDS triggers LC apoptosis remains
unclear. After EDS-mediated depletion, LC repopulation
can occur from interstitial mesenchymal-like precursor
cells (Teerds, 1996). The identity of the repopulating LCs
has been very well characterized by checking various struc-
tural and functional markers, in a recent study (Teerds et
al., 1999). Given the fact that the regeneration of LCs from
precursor cells after EDS treatment is independent of LH
and other pituitary hormones, it has been speculated that
locally produced growth factors might play an important
role (for review see Teerds, 1996). However, the nature of
these factors remains unknown. In the present study, the
finding that blockade of SCF/c-kit interaction during days

1-2 after EDS treatment could accelerate mature LC apo-
ptosis, and that the levels of KL-1 mRNA, which represents
the major source of soluble SCF, were significantly sup-
pressed during the first 2 days after EDS treatment, suggests
that soluble SCF might be involved in the apoptosis of
mature LCs induced by EDS. However, no induction of LC
apoptosis after administration of ACK-2 to adult male mice
was shown in a previous study (Yoshinaga et al., 1991) or by
our own observations (data not shown). This might reflect
the fact that the presence or absence of other factors might
be required for induction of LC apoptosis and blockade of
the prosurvival effect of SCF alone is not enough to trigger
this process. Alternatively, it is also possible that iv injec-
tion of ACK-2 did not totally block soluble SCF/c-kit
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interaction and failed to generate a situation similar to that
brought about by EDS in suppressing SCF expression and
thus could not induce LC apoptosis.

Interestingly, immediately after LCs underwent apopto-
sis, precursor LCs started to proliferate and this prolifera-
tion first peaked on days 3-4, when the apoptotic LCs were
not yet completely diminished. Blockade of SCF/c-kit in-
teraction significantly inhibited the proliferative activity of
precursor LCs during the first wave of proliferation. Simi-
larly, this phenomenon was also observed in the second
wave of precursor LC proliferation around day 10. It is
noteworthy that a striking elevation in KL-1 mRNA levels
correlated with these two peaks of proliferation. These
findings strongly suggest that soluble SCF might be able to
stimulate proliferation of precursor LCs during the first two
waves of proliferation. Using primary culture in conjunc-
tion with cell proliferation ELISA, we analyzed the effect of
recombinant SCF on the proliferative activity of precursor
LCs and mature LCs isolated at days 3, 10, and 20 after EDS
treatment. The stimulatory effect of SCF on the prolifera-
tion of precursor LCs rather than mature LCs in vitro
corroborated our finding that administration of ACK-2
inhibited the proliferation of precursor LCs after EDS treat-
ment in vivo. Abolishment of this effect by preincubation
with ACK-2 further proved that this effect was mediated
through SCF/c-kit interaction. The fact that ACK-2 admin-
istration on days 1-4 and 7-11 after EDS treatment could
not completely abolish the proliferation of precursor LCs
suggests that either some other factors were involved in the
process as well or this antibody injection-based method can
only partially and never totally block the function of
soluble SCF. The latter is likely, because in the present
study spermatogonia in the seminiferous epithelium were
not completely depleted but were significantly reduced in
number 4 days after ACK-2 treatment (data not shown).

Oscillation of KL-1 mRNA levels during LC death and
recovery is of great interest, since it implies that it is the
soluble form of SCF that is involved and strictly regulated
in these two specific cellular events induced by EDS. The
mechanisms behind the oscillating levels of KL-1 mRNA
seem to be complex, since both T and FSH concentrations
changed dramatically during the regeneration process after
EDS treatment. One possibility could be that T might be
able to suppress SCF expression normally and when T
levels decline to certain levels as a result of LC depletion,
the suppressive effect is removed and consequently, KL-1
MRNA levels are up-regulated. However, the unaffected
levels of KL-1 mRNA on days 7 and 15 do not support this
hypothesis, since at these time points T levels were unde-
tectable. Therefore, SCF mRNA levels may not be directly
regulated by T even though the involvement of T regulation
cannot be completely excluded. This is also supported by
the results of two previous studies showing no effects of T
on SCF gene expression in vitro (Taylor et al., 1996; Yan et
al., 1999). During the whole regeneration period, FSH levels
in the EDS-treated groups remained higher than in the
controls and the fluctuation of FSH levels correlated very
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well with that of KL-1 mRNA levels. On the basis of
previous studies showing that SCF gene expression is
mainly regulated by FSH through the cAMP/PKA pathway
(Rossi et al., 1991, 1994; Taylor et al., 1996; Yan et al.,
1999), it is plausible to suggest that the oscillation of KL-1
MRNA levels results from FSH regulation. The fact that
FSH levels were higher in the EDS-treated rats than in the
controls is also documented in two previous studies (Hen-
riksen et al., 1995; Tena-Sempere et al., 1997). An intrigu-
ing question arising from these observations is how FSH
levels became elevated after EDS treatment. One possibility
might be that the increased FSH levels were a direct result
of the decreased T levels via stimulation of the GnRH
pathway (Plant, 1986). Another possibility might be that
EDS could suppress some factors, such as inhibin and
follistatin (Halvorson and DeCherney, 1996), which can
negatively regulate FSH, and result in increased FSH levels.
However, our recent data indicated that inhibin levels, in
fact, were elevated, rather than inhibited, in EDS-treated
rats (Tena-Sempere et al., 1999). Thus, it will be interesting
to see how follistatin expression is regulated in EDS-treated
animals. The suppressive effects of the factors involved
might be T-dependent or T-independent. All these hypoth-
eses remain to be clarified in future studies.

To our surprise, the third wave of precursor LC proliferation
was not significantly affected by ACK-2 administration. How-
ever, the proliferative activity of precursor LCs isolated at day
20 after EDS treatment was found to be elevated in the
presence of SCF when they were cultured in vitro. The
discrepancy appeared to be caused by the inhibitory effect of
mature LCs on the proliferation of precursor LCs, as shown in
our primary cell culture experiment. A comparable situation
could be found around day 20 after EDS treatment, when an
appreciable proportion of LCs had already differentiated and
started to function. This is a very intriguing finding because it
strongly suggests that mature LCs could suppress precursor
LC proliferation probably by secreting some factor(s) that may
antagonize the SCF/c-kit-mediated proliferation-stimulatory
effect. This might be a mechanism by which mature Leydig
cell numbers are controlled during prepubertal LC develop-
ment and LC repopulation after depletion by means of EDS.
Moreover, it is noteworthy that around day 20 the new LCs
are already functional, as manifested by the significantly
elevated levels of T in comparison with those on days 2-10. It
is likely that the factor(s) that mature LCs may secrete to
suppress precursor LC proliferation might be under the regu-
lation of T.

The finding of a significant elevation of T levels in the
ACK-2-treated group in comparison with the untreated
group between days 21 and 24 after EDS treatment is
consistent with the results of a previous study showing that
administration of ACK-2 to adult male mice results in a
transient elevation of T concentrations, although it was
regarded as insignificant (Yoshinaga et al., 1991). In the
present study, the increased serum T levels in the EDS +
ACK-2 group were accompanied by significantly decreased
LH levels, compared with the EDS-only group, indicating
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FIG. 10. Schematic presentation of a proposed mechanism by
which SCF acts as a survival factor for mature LCs and a growth
factor during precursor LC proliferation after EDS treatment. EDS
may affect soluble SCF production by Sertoli cells and the severely
reduced levels of soluble SCF fail to provide enough support for
mature LC survival. Consequently, LCs undergo apoptosis. Acti-
vation of LC apoptosis may also involve other factors and the
cytotoxic effect of EDS. Serum T levels decrease dramatically due
to the massive death of mature LCs. This stimulates FSH, which in
turn up-regulates soluble SCF levels via the cCAMP/PKA pathway.
The up-regulated soluble SCF reaches interstitial precursor LCs
and interacts with c-kit on these cells to stimulate proliferation.
After two waves of proliferation of precursor cells, these new LCs
differentiate and start to produce T. The resumed level of T brings
down FSH to control levels. Consequently, the production of
soluble SCF in Sertoli cells declines to control levels and SCF/c-kit
interaction starts to affect T production rather than proliferation.

that the increased levels of T were not artifacts. The
physiological significance of elevated T levels after ACK-2
administration remains unclear. It might imply that SCF/
c-kit interaction switches its function from stimulating
proliferation to regulating steroidogenesis. One recent el-
egant study using a “knock-in” technique showed that LCs
displayed hyperplasia and T levels appeared to be normal
but LH levels were significantly elevated in transgenic mice
bearing a mutation at the PI3 kinase binding site of c-kit
receptor (Kissel et al., 2000). In these mice the PI3 kinase/
Akt kinase-mediated c-kit downstream signaling transduc-
tion pathway was totally abolished. The phenotype of LCs
in the mutant mice suggests that the PI3 kinase/Akt
kinase-mediated c-kit downstream signaling pathway
might be involved in the negative control of LC prolifera-
tion and steroidogenesis. However, another independent
group using similar strategy failed to show the phenotypes
in LCs (Blume-Jensen et al., 2000). Since activation of c-kit
by SCF could in fact activate multiple signaling transduc-
tion pathways, the effect of other signaling pathways and
the net effect of the interaction of these pathways on LC
proliferation and T production would be of great interest for
better interpreting the present findings and for gaining more
insight into the physiological role of c-kit on LCs.

Yan et al.

Figure 10 depicts a proposed mechanism by which
soluble SCF supports mature LC survival and stimulates
precursor LC proliferation after EDS treatment. It is sug-
gested that EDS may directly and/or indirectly inhibit
soluble SCF production by Sertoli cells and thus suppress
its prosurvival effect on mature LCs. Consequently, LCs
undergo apoptosis. As discussed earlier, it is most likely
that activation of LC apoptosis also involves other factors
and the cytotoxic effect of EDS. The dramatically decreased
serum T level due to massive death of mature LCs stimu-
lates FSH, which in turn up-regulates the levels of soluble
SCF. The up-regulated soluble SCF reaches its targets,
interstitial precursor LCs, and interacts with c-kit on these
cells to stimulated proliferation. After two waves of prolif-
eration, the new LCs differentiate and start to produce T.
The resumed level of T brings FSH down to control levels.
As a result, production of soluble SCF in Sertoli cells
declines to control levels and SCF/c-kit interaction starts to
affect T production rather than cell proliferation.

Taken together, the findings of the present study provide
evidence, for the first time, that SCF functions as a survival
factor for mature LCs and a growth factor during regenera-
tion of the LC population from precursor LCs after LC
depletion by means of EDS. Furthermore, SCF also partici-
pates in regulating T production by mature LCs. The
proposed model provides new insight into the mechanisms
of LC apoptosis and regeneration after EDS treatment,
which might be applicable to the regulation of adult-type
LC development in the prepubertal rat testis, given the fact
that the regeneration process of precursor LCs after LC
depletion by means of EDS mimics the development of
adult-type LCs during prepubertal life.
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