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ABSTRACT Bone marrow (BM) hematopoietic stem
cells (HSCs) have been shown to facilitate regeneration
in multiple nonhematopoietic tissues by either generat-
ing epithelial cells or altering the inflammatory re-
sponse. Depending on injury type, the predominant
mechanism of epithelial lineage regeneration occurs by
spontaneous cell fusion or transdifferentiation. Irre-
spective of the mechanism, mobilization from the BM
is a prerequisite. Mechanisms by which HSCs mobilize
into damaged organs are currently under scrutiny.
Murine and human studies have shown that the chemo-
kine SDF-1 and its receptor CXCR4 participate in the
mobilization of HSCs from BM and in the migration of
HSCs to injured liver. SDF-1 is a potent HSC chemoat-
tractant and is produced by the liver. Production is
increased during liver injury leading to increased HSC
migration to the liver, a finding diminished by neutral-
izing anti-CXCR4 antibodies. Additional factors have
been implicated in the control of hepatic migration of
HSCs such as IL-8, hepatocyte growth factor, and
MMP-9. Matriceal remodeling is an essential compo-
nent in HSC engraftment, and MMP-9 expression is
increased in liver injury. This review focuses on the
complex interaction of chemokines, adhesion mole-
cules, and extracellular matrix factors required for
successful migration and engraftment of HSCs into the
liver.—Dalakas, E., Newsome, P. N., Harrison, D. J.,
Plevris, J. N. Hematopoietic stem cell trafficking in
liver injury. FASEB J. 19, 1225–1231 (2005)
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Bone marrow (BM) hematopoietic stem cells (HSCs)
have long been known to possess the unique capacity
for self-renewal and differentiation into hematopoietic
and mesenchymal cell lineages (1). That this plasticity
extended to nonhematopoietic lineages such as hepatic
oval cells, hepatocytes, cholangiocytes (1–3), skeletal
muscle cells (4), neurons (5), epithelial cells of the
lung, GI tract, and skin (6) is a relatively new observa-
tion, and has raised hopes that such cells could in the
future be used for the regeneration and reconstitution
of damaged organ tissue. This process of epithelial
lineage regeneration appears to occur via a mechanism
of spontaneous cell fusion or transdifferentiation.
Emerging data in the field of cardiac regeneration
suggest that incoming stem cells can also contribute to
tissue repair by promoting neoangiogenesis and mini-

mizing cardiomyocyte apoptosis (7). Whatever the un-
derlying mechanism by which the HSCs participate in
tissue regeneration, it will still require the presence of
HSCs to mobilize from the BM and reach their target
organ. The aim of this review is to summarize current
available information addressing the aspects of HSC
mobilization and trafficking in response to liver injury.

ADULT STEM CELLS AND
LIVER REGENERATION

While the liver is a mitotically quiescent organ in adult
humans and animals (8), hepatocytes have a remark-
able capacity to meet the replacement demands during
cellular loss (9, 10). However, when either chronic/
extensive damage is inflicted on the liver or when
hepatocyte proliferation is inhibited, a facultative cel-
lular compartment of hepatic oval cells (HOCs), lo-
cated within the smallest branches of the intrahepatic
biliary tree is activated and leads to liver repair (10, 11).
More recently, several groups have demonstrated that
BM-derived HSCs may contribute to liver repair (1–3,
12–14). The contribution of HSCs to liver repair has
varied, but is generally related to the presence and
severity of liver injury. Thus, the restitutive response of
the liver to different injuries has been proposed to
include three levels of proliferating cells: 1) the hepa-
tocyte, 2) the endogenous ductular progenitor cell or
HOC, and 3) a pluripotent stem cell derived from
circulating BM cells (9).

Controversy has recently arisen as to whether HSCs
contribute to the hepatocyte lineage in liver injury via
transdifferentiation alone or by adopting the pheno-
type of hepatocytes after spontaneous cell fusion (15).
Recent reports in favor of the fusion hypothesis have
demonstrated that adult cells can adopt the phenotype
of other cell lines by fusing with embryonal stem cells
(16, 17) as well as BM-derived hepatocytes generated by
in vivo cell fusion (18). In support of transdifferentia-
tion, several groups have demonstrated that HSCs can
differentiate into hepatocytes (19, 20) and pancreatic
endocrine cells (21) without any evidence of cell fu-
sion. The mechanism of HSC hepatic regeneration

1 Correspondence: Hepatology Unit, Chancellor's Build-
ing, The University of Edinburgh, 49 Little France Crescent,
Edinburgh, EH16 4SB UK. E-mail: e.dalakas@ed.ac.uk

doi: 10.1096/fj.04-2604rev

12250892-6638/05/0019-1225 © FASEB



remains unresolved; clearly, any future stem cell re-
search will have to distinguish HSC transdifferentiation
from fusion events. Whatever the mechanism of hepatic
regeneration is, the trafficking of HSCs to the liver may
play an important component of the reparative process
in liver injury.

The contribution of HSCs to hepatocyte lineages in
rodents and humans remains a controversial area with
data both supporting (1–3, 13, 14, 22) and rebutting
(23–25) findings. This may in part reflect the types of
cells used, the injury models used, and the methods
used to detect stem cell progeny. Nevertheless a thera-
peutic role of HSCs in liver injury has been described in
rodents (13, 26), albeit with varying contributions of
transdifferentiation and fusion. In other models, par-
ticularly in humans, the contribution that HSCs make
to liver repair by transdifferentiation is lower, on the
order of 0.011–20% (2, 3, 6, 27–29). To improve on this
level of contribution will require greater understanding
of the mechanisms by which stem cells mobilize from
the BM and home to injured organs. There remains a
pressing need for further studies to confirm or refute
the claims that stem cells can lead to improved liver
repair and hence survival in either a rodent or human
setting.

Murine and human studies have shown that the
chemokine stromal cell-derived factor-1 (SDF-1) and its
receptor, CXCR4, are involved in recruiting inflamma-
tory cells into injured livers as well as inducing prolif-
eration of endogenous HOCs (30, 31). SDF-1/CXCR4
interactions participate in the mobilization of HSCs
from BM and have been implicated in the migration of
human HSCs to the liver during injury (32, 33). Other
factors have been implicated in the regulation of he-
patic migration of HSCs, including interleukin-8 (IL-8),
hepatocyte growth factor (HGF), and matrix metallo-
proteinases (MMPs).

ADULT STEM CELL MOBILIZATION AND
RECRUITMENT IN LIVER INJURY

Human studies have demonstrated increased levels of
circulating HSCs in response to a systemic injury such
as acute sickle cell crisis and surgical trauma (34, 35). A
recent study by De Silvestro et al. demonstrated that
peripheral blood HSC levels were elevated after exten-
sive liver resection (36). Our group has demonstrated
that in patients with alcoholic hepatitis there is an
increase in circulating HSCs when compared with
normal controls (37). The extent to which these pe-
ripheral blood HSCs are mobilized into the circulation
of patients with liver injury and contribute to liver
repair remains uncertain and is under investigation.

Release of HSC from the bone marrow

In the adult BM, the release of HSCs into the periph-
eral circulation is regulated in part by the CXC chemo-
kine SDF-1 and its receptor CXCR4 (32, 33, 38, 39).
SDF-1 is a potent chemoattractant for HSCs and is

produced by various BM stromal cell types and epithe-
lial cells in a broad range of normal tissues, including
the liver (40–46) (see Table 1). It plays a major role in
the homing, migration, proliferation, differentiation,
and survival of many cell types including human and
murine hematopoietic stem/progenitor cells (32, 33,
38, 39, 47–50). Knockout mice deficient in SDF-1
exhibit disturbed hematopoiesis and knockout mice
deficient in the CXCR4 receptor die in utero (51, 52),
underlining their importance.

SDF-1 is highly conserved between mice and humans
(53, 54), mediating its effect through the CXCR4
receptor that is expressed on CD34� HSCs, mononu-
clear leukocytes, and a variety of stromal cells (53).
CXCR4 is a G-protein-coupled, 7-transmembrane re-
ceptor and is the only known receptor for SDF-1 (55).
The interaction between SDF-1 and CXCR4 has been
demonstrated to trigger multiple intracellular signals,
including calcium mobilization and phosphorylation of
adhesion components such as extracellular signal-reg-
ulated kinases 1 and 2 (ERK-1 and -2), proline-rich
tyrosine kinase 2 (Pyk-2), focal adhesion kinase (FAK),
and protein kinase C (PKC) (56, 57) In the adult BM,
release of HSCs into the peripheral circulation is
controlled in part by a concentration gradient of SDF-1
established within the BM microenvironment (39, 58,
59). Reduction of BM SDF-1 levels has been shown to
result in release of HSC into the peripheral circulation,
an effect mediated partly by granulocyte colony-
stimulating factor (G-CSF), which induces the release
and proliferation of neutrophil proteases such as
elastase, cathepsin G, and MMPs (33). Increased
expression of SDF-1 in the peripheral circulation
facilitates further mobilization of HSCs down a con-
centration gradient (60).

Several reports demonstrate increased circulating
plasma levels of SDF-1 in autoimmune and viral dis-
eases, in conjunction with increased expression of
SDF-1 in the parenchyma of rejecting liver transplants
and viral/autoimmune liver diseases (31, 61). These
observations have been reported in murine liver injury
models (12, 30), suggesting that liver injury may, by the

TABLE 1. SDF-1 expression in normal human tissue

Tissue type Cell line SDF-1 expression

Bone marrow Stromal cell lines
Tonsil Epithelial cells in tonsillar crypt
Spleen Reticular cells
Fetal liver Mesothelial cells, biliary epithelium, ductal

plate
Adult liver Biliary epithelium
Lung Interstitial cells
Cardiac Cardiac myocytes
Brain Glial cells, cortical neuronal cells,

astrocytes
Muscle Skeletal myocytes
Skin Epithelial cells of sweat glands, endothelial

cells, pericytes, dendritic cells
Thymus Stromal cells, medullary cells, epithelial

cells
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expression of SDF-1, produce a concentration gradient
between liver and BM, which in turn facilitates the
recruitment of inflammatory cells and HSCs from the
BM into the circulation and then into the liver (12, 31)
(see Fig. 1A–C).

The mechanism by which SDF-1 influences HSC
mobilization is unclear, although it is thought to in-
volve specific changes to the adhesion of progenitor
cells to the BM microenvironment via the modulation
of adhesion molecules such as the integrin-dependent
very late antigen-4 (VLA-4) (62). In vitro there is an
increased trans-endothelial migration of human pro-
genitor cells toward a gradient of SDF-1 (48, 63), and
SDF-1 has been shown to promote the survival of
circulating CD34� HSCs by counteracting apoptosis via
the activation of the phosphotidyl inositol 3 kinase
(PI3-K)/Akt pathway (64).

It has been speculated that the release of proteolytic
enzymes and chemokines from injured liver into the
circulation could also facilitate mobilization and re-
cruitment of HSCs (12). Studies with G-CSF have
revealed neutrophil proteolytic enzymes such as elas-
tase, cathepsin G, and MMPs, including MMP-2 and
MMP-9, result in the proteolytic degradation of SDF-1
in the BM, thus facilitating the release of stem cells (33,
65). MMPs degrade extracellular matrix proteins and
are known to play important roles in tissue inflamma-
tion, tumor growth, and organ remodeling (66, 67).
MMPs are secreted as zymogens (pro-MMPs) that are
activated by a variety of proteinases and inhibited by
tissue inhibitors of metalloproteinases (TIMPs) and
�2-macroglobulin (66). In humans, MMP-9 is produced
in a wide variety of cells types such as neutrophils,
progenitor cells, endothelial cells, fibroblasts, connec-
tive tissue cells, tumor cells, and parenchymal cells,
including the liver (66, 68). Human and animal studies
have demonstrated that MMP-9 promotes the release of

progenitor cells from the BM into the circulation by 1)
inducing the release of soluble kit-ligand (sKitL) from
BM stromal cells, which accelerates the proliferation
and migration of HSCs, 2) cleaving the interaction of
adhesion molecules VLA-4/vascular cell adhesion mol-
ecule-1 (VCAM-1) between stromal cells and HSCs in
the BM, and 3) enhancing the SDF-1 induced migration
potential of HSCs across the subendothelial basement
membrane (38, 69–71). In addition, MMP-9-induced
recruitment of HSCs may occur via other mechanisms
such as the shedding of membrane-bound stem cell
factor (SCF) and the secretion of MMP-9 by progenitor
cells in response to SDF-1 stimulation (70, 71). MMP-9
has been demonstrated to have an active involvement
in liver remodeling in cirrhosis and inflammation as
well as regulating hepatocyte regeneration after partial
hepatectomy (72–74).

Human studies have demonstrated elevated serum
and plasma MMP-9 levels in various types of liver injury
including acute allograft rejection (75), ischemic reper-
fusion injury (76, 77), chronic viral hepatitis (78, 79),
and alcoholic liver cirrhosis (80), suggesting there is a
correlation between disease severity/progression and
MMP-9 expression. In these studies, 70–80% of the
serum and plasma MMP-9 measured, appeared in the
active complex form and could be detected in serum
samples from as early as 30 min and �1 wk after an
acute injury process. In chronic liver diseases such as
alcoholic cirrhosis, persistently elevated plasma activi-
ties of MMP-9 have been demonstrated, suggesting its
expression reflects a process of ongoing extracellular
matrix remodeling (80). Carbon tetrachloride (CCl4)
-induced liver injury studies in rats and NOD/SCID
mice (in which bone marrow cells were seen to trans-
differentiate into hepatocytes) demonstrated an in-
creased expression and activation of MMP-9 in the liver,
suggesting that this factor could potentially be involved

Figure 1. A) Release of HSCs
from bone marrow into periph-
eral circulation mediated via
SDF-1 concentration gradient.
B) Release of HSCs into periph-
eral circulation enhanced via
MMP-9 and IL-8. C) Recruit-
ment of HSCs into injured liver
mediated via SDF-1, HGF, and
SCF.
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in the stress-induced recruitment of HSCs from the BM
to the injured liver (12, 81). A recent study by Hanu-
megowda et al. (82) has demonstrated an increased
activation of MMP-9 in the livers of rats with monocro-
taline-induced liver injury (which inhibits hepatocyte
proliferation and promotes an HOC response). This
increase in MMP-9 activity was produced from either
the endothelial cells or from an activation or influx of
inflammatory cells into the injured hepatic paren-
chyma (82). In a study by Watanabe et al, mice were
injected with anti-Fas antibody (Jo2) to induce an
acute hepatitis, demonstrating that MMP-9 expres-
sion in the circulation was elevated and accompanied
by the recruitment of HSCs from the BM into the
circulation (83).

Interactions between MMP-9 and other chemokines
such as IL-8 have been demonstrated in mobilization
studies whereby MMP-9 is rapidly induced in neutro-
phils after exposure to IL-8 and resulting in the release
of HSCs into the peripheral circulation (84–87) (see
Fig. 1B). Elevated IL-8 levels have been demonstrated
in the circulation and hepatic parenchyma of many
human liver conditions including alcoholic hepatitis,
viral hepatitis, chronic alcoholic liver disease, and acute
graft-vs.-host disease after liver transplantation (88–92).
Thus IL-8, a known neutrophil chemoattractant in liver
disease, also has the potential to induce the release of
HSCs into the peripheral circulation via an indirect
mechanism requiring the activation of circulating neu-
trophils and the release of MMP-9 (86).

Hepatic recruitment of HSCs in liver injury (Fig. 1C)

Kollet et al. have recently demonstrated the key role
that SDF-1/CXCR4-mediated signaling plays in the
migration of human progenitors to the murine liver.
Neutralization of the CXCR4 receptor with an anti-
CXCR4 antibody significantly inhibited the homing of
human cord blood or mobilized peripheral blood
CD34� stem cells to the liver of irradiated NOD/SCID
mice (12). Furthermore, injection of human SDF-1 into
the murine liver parenchyma further enhanced the
hepatic migration of human stem cells. SDF-1 expres-
sion has been reported in a variety of liver and nonliver
conditions such as liver allograft rejection (61), viral
and autoimmune liver diseases (12, 31), ischemic brain
injury (93), myocardial infarction (94), inflammatory
skin conditions (44), and BM injury induced by total
body irradiation or chemotherapy (95). It is unclear
whether this expression is an attempt to recruit inflam-
matory cells or HSCs toward the damaged organ or is
indeed entirely unrelated.

SDF-1 expression in rejecting liver transplants and
viral/autoimmune liver diseases was seen to be con-
fined to the biliary epithelium and other nonparenchy-
mal cells, thus promoting the retention of CXCR4�

lymphocytes and possibly HSCs in the portal tracts (12,
31, 61). Hatch et al. (30) were able to demonstrate that
SDF-1 protein was up-regulated in the membrane frac-

tion of the whole liver lysates. Notably, however, this
was only the case in animals that had undergone HOC
regeneration models [partial hepatectomy (PH) and
2-acetylaminofluorene (2-AAF) or 2-AAF and CCl4].
Animals that had undergone non-oval cell regeneration
models of PH, CCl4 alone, and 2-AAF alone did not
produce SDF-1 protein. Immunohistochemistry on the
oval cell regeneration model liver sections revealed
increased expression of SDF-1 in the hepatocytes adja-
cent to the proliferating oval cells and positive CXCR4
staining on these oval cells. These data argue for the
defined production of SDF-1 in forms of liver injury
that may be attempting to recruit HSCs to the repara-
tive process.

The cytokine HGF, which is produced in the non-
parenchymal perisinusoidal cells of the liver and in-
duces hepatocyte proliferation, may also be involved in
the migration and differentiation of HSC into the
injured liver (12, 96). Increased expression of HGF has
been demonstrated in CCl4-induced liver injury and in
rodent HOC regeneration models, suggesting it is
involved in stem cell proliferation, migration, and
differentiation (22, 97). Kollet et al. recently demon-
strated that after liver injury, levels of HGF were
increased and contributed to the recruitment of hu-
man CD34� stem cells to the injured liver (12) by
increasing the motility of human progenitors and in
synergy with SCF potentiated both CXCR4- and SDF-1-
induced directional migration.

CONCLUSIONS

Many concepts regarding stem cell migration and plas-
ticity come from studies of multipotent hematopoietic
stem cells and the molecular pathways of hematopoiesis
(98). There is now increasing evidence to suggest that
liver injury induces the expression and secretion of
signaling mediators such as SDF-1, IL-8, MMPs, HGF,
and SCF, which facilitate the homing and engraftment
of HSCs to the liver (12, 30, 31). Factors regulating
long-term engraftment and differentiation of HSCs
into hepatocytes are yet to be defined, although che-
mokines, adhesion molecules, and extracellular matrix
factors would appear to have an important role to play.
A better understanding of the factors regulating HSC
homing, subsequent engraftment into the liver, and
finally differentiation into hepatocytes are essential if
the potential therapeutic manipulation of HSCs to treat
liver disease is to be realized.

E.D. was supported by a University of Edinburgh Research
Fellowship Award. Figure 1 designed by Wendy Richardson
from The University of Edinburgh Medical Illustration Unit.
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